RESEARCH NOTE

Transient Kinetic Analysis of the Oxidative Dehydrogenation of Propane

D. Creaser,[‡] B. Andersson,[†] R. R. Hudgins,^{*,1} and P. L. Silveston^{*}

* Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada; †Department of Chemical Reaction Engineering, Chalmers University of Technology, S-412 96, Göteborg, Sweden; and †Chemical Technology, Luleå University of Technology, S-971 87 Luleå, Sweden

Received May 11, 1998; revised November 18, 1998; accepted November 19, 1998

Oxidative dehydrogenation of propane was studied using various transient techniques. Results support a redox mechanism in which propane reduces the catalyst, which is reoxidized by gas-phase oxygen. Only lattice oxygen participates in propene formation. Desorbable oxygen is a major source of poor selectivity, although lattice oxygen also causes total oxidation. Consequently, propene selectivity in the absence of gas-phase O_2 is superior to co-feed, steady-state selectivity at the same propane conversion. Propene selectivity is further improved by increasing the degree of catalyst reduction. © 1999 Academic Press

Key Words: propane oxidative dehydrogenation; V-Mg-O; transient analysis.

Poor selectivity in the oxidative dehydrogenation of alkanes has been a problem preventing commercial exploitation of this process. A better understanding of the mechanism of oxidative dehydrogenation would permit identification of factors limiting the selectivity. Most researchers favor a Mars-Van Krevelen redox mechanism involving reduction of the metal oxide surface by alkane with the formation of alkene and water, followed by reoxidation of the surface through gas-phase oxygen. Zanthoff et al. (1) summarize mechanisms and surface properties proposed in the recent literature for selective oxidative dehydrogenation. In an earlier steady-state study (2), the authors observed that several Mars-Van Krevelen redox models would fit the measurements but were unable to decide which model was most appropriate. Our inability to resolve the models is not surprising, since it is difficult to deduce mechanism from kinetic data collected at steady state. Transient data are more effective. The use of transient response for investigation of mechanism has been reviewed by Kobayashi and Kobayashi (3), among others. These methods have been applied to to oxidative dehydrogenation. Sloczynski (4) examined reduction and reoxidation reactions from cyclic experiments for the oxidative dehydrogenation of C₃H₈ over

 V_2O_5/TiO_2 , while Pantazidis and Mirodatos (5) used transient and isotope exchange experiments to propose a qualitative mechanism for the reaction over Mg–V–O catalyst.

In this contribution, various transient techniques such as startup, reaction interruption, and pulsing are used to identify steps in the reaction mechanism, estimate amounts of intermediates or reaction by-products adsorbed, and determine the degree of reduction of the catalyst surface. A practical goal of our study was to evaluate whether an unsteady-state operation could minimize complete oxidation of C_3H_8 .

The same batch of catalyst used in our earlier study of the steady-state kinetics of oxidative dehydrogenation (2) was used for this investigation. It contained 60 wt% MgO and 40 wt% V_2O_5 . X-ray diffraction indicated that the principal phases were magnesium oxide and magnesium *ortho*-vanadate [Mg₃(VO₄)₂].

Experiments were performed in a quartz microreactor containing 15 to 40 mg of catalyst. Details of reactor design have been published (3). All experiments were conducted isothermally at 510°C. Total flow rate was 50 ml (STP)/min; pressure was close to atmospheric.

A quadrupole mass spectrometer with a computerized data acquisition system was used to monitor the transient response of each component and allowance was made for cross-contributions among component peaks. Details of the mass spectrometry (MS) data analysis are given by (6). To verify the MS results, concentrations of carbon-containing products were measured in parallel by gas chromatography (GC) at a much lower frequency. GC analysis established that the only carbon-containing products were C_3H_{6} , CO_2 , and CO. Creaser and Andersson (2) described the GC analysis.

Figure 1 shows results of a step-change from an initial feed containing 6% O₂ to a reaction mixture of 6% O₂ and 3% C₃H₈ employing 21 mg of fresh catalyst. The step-change occurs at time zero. From the delay in the appearance of C₃H₈ in the off-gas, the transport lag due to gas holdup for the reactor system was about 9 s. Buildup of

¹ To whom correspondence should be addressed.

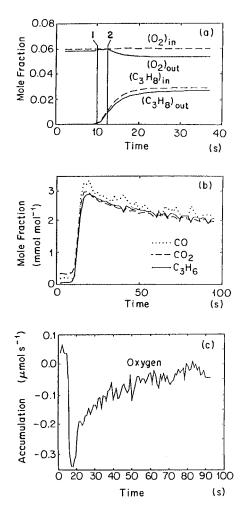


FIG. 1. (a) Reactant responses, (b) product responses on startup, and (c) rate of consumption of O_2 in the catalyst with a feed containing 6% O_2 and 3% C_3H_8 with 21 mg catalyst. Broken curves in (a) show responses when catalyst is replaced by inert solid of identical size and shape.

 C_3H_8 indicates distortion of the square-wave input due to mixing. Broken curves in Fig. 1a show inlet concentrations of the reactants estimated by performing the step-change with catalyst replaced by quartz chips of identical size and shape. Figure 1a shows that with the fully oxidized fresh catalyst, C_3H_8 consumption begins (vertical line 1) about 4 s sooner than O_2 consumption (vertical line 2). Gas-phase O_2 is consumed only after the catalyst is partially reduced.

Initially, with a fully oxidized catalyst, the reaction rate is high, resulting in a peak in product concentrations (Fig. 1b). As the catalyst is reduced, reaction rates of the three products fall together. It takes about 2000 s to reach steady state, so Fig. 1b indicates only that the initial responses of the three carbon-containing products are nearly identical.

Figure 1c shows the instantaneous rate of consumption of O_2 on or in the catalyst as obtained by mass balances. Water has been excluded from these balance calculations because the water response is distorted by adsorption in the mass

spectrometer chamber. Instead, the quantity of water leaving the reactor is assumed to correspond stoichiometrically to the quantity of the other products detected. The response in Fig. 1c exhibits noise because is it calculated from differences between much larger concentrations. Nevertheless, rapid depletion of O_2 occurring on startup exceeds significantly the average amplitude of the noise and trends are certainly discernible. For example, after about 150 s, there is virtually zero O_2 depletion. Integrating with respect to time between 10 and 150 s gave 15 μ mol as the total quantity of O_2 removed from the magnesium *ortho*-vanadate phase. Thus, in the approach to steady state, 4.1% of the maximum O_2 available is consumed. This means that just the near surface of the catalyst provides O_2 and participates in the redox chemistry.

Carbon accumulated on the surface but the amount was very small. Carbon accumulation began about 30 s later than the sharp depletion of O_2 in Fig. 1c, but terminated when O_2 ended.

Figure 2 shows product transients following interruption of the reaction by a switch to a new feed composition. In Fig. 2a, the step-change was made from the steady-state C_3H_8/O_2 feed to pure He, while in Fig. 2b, it was made from the steady-state feed to an oxygen/He mixture. The concentration of C_3H_8 and quantities of catalyst also differed. In Fig. 2a, the increase in C_3H_6 prior to 10 s is a transport lag effect. It is noticeable that the peak in C_3H_8

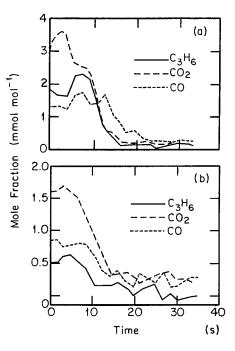


FIG. 2. Product transient responses (a) after interruption of catalyst exposure to $6\% C_3H_8$ and $6\% O_2$ by switching to pure He for 30 mg catalyst and (b) after interruption of exposure to $3\% C_3H_8$ and $6\% O_2$ for 21 mg catalyst by switching off C_3H_8 .

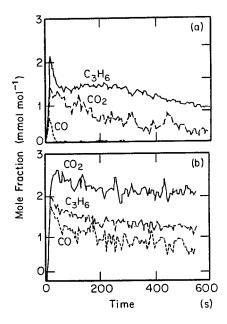


FIG. 3. Product responses to startup with a catalyst exposed initially to $6\% O_2$ using (a) $6\% C_3H_8$ and (b) $6\% C_3H_8$ and 6% oxygen.

corresponds to a drop in CO_2 as O_2 is removed from the system. Thus, once the reactants are removed, C_3H_6 and CO desorb but are not oxidized because O_2 is no longer available. For a step-change to pure He, the CO response lags those of C_3H_6 and carbon dioxide. The lag is about 5 s for CO_2 and CO. The lag in Fig. 2b is smaller because gas flows are higher. Concentrations of all carbon-containing products decrease following the change when the transport lag is allowed for.

The quantity of carbon on the catalyst surface prior to a step-change to He (Fig. 2a) was crudely estimated by integrating the area below the CO response curve and above the CO₂ and C_3H_6 response curves. It was found to be about 0.23 μ mol (the catalyst contained 132 μ mol of V).

For the step-change to O_2 and He, O_2 was adsorbed and the catalyst reoxidized. The quantity of O_2 accumulated on the catalyst following the switch was 6.7 μ mol. When the reaction was started with fresh catalyst, about 15 μ mol of O_2 was removed. Thus, less than half of the O_2 removed is replaced by reoxidation. The catalyst, for which the reaction was interrupted with a step-change to pure He, was also reoxidized later by exposure to 6% O_2 at the reaction temperature. Again, only a fraction of the original O_2 removed was eventually replaced.

These experiments were performed to determine how much O_2 the catalyst can provide to drive the reaction and to test reoxidation of the catalyst. Selectivity was also of interest. In these experiments, the catalyst was reduced by reaction with C_3H_8 and then reoxidized with O_2 . Between the reduction and oxidation steps, the catalyst was sometimes flushed with pure He. Prior to all runs, the catalyst was maintained at steady state with a feed of 6% O_2 and 6% C_3H_8 for at least 3 h. In the four-part cycle experiments, the catalyst was first exposed to 6% O_2 for 10 min, followed by pure He for 5 min. Next, 6% C_3H_8 was fed for 10 min, again followed by 5 min of pure He. This process was repeated five times and the reaction temperature was maintained at 510°C throughout. Two-part cycle experiments were the same except that the He flush steps were omitted.

Figure 3a shows the product concentrations following exposure to C_3H_8 for a four-part cycle experiment with 17 mg of catalyst. There is a sharp rise in concentration of all three carbon-containing products in the first 20 s following the switch to C_3H_8 . After the maxima, product concentrations decrease quickly for about 30 s and thereafter decreased more slowly, indicating that the catalyst's supply of near-surface lattice or surface oxygen has been depleted. Production of hydrogen was not observed.

For comparison purposes, Fig. 3b shows product concentrations when the same quantity of catalyst is exposed alternately to O_2 and a gas containing 6% C_3H_8 and 6% O_2 . Catalysts for Figs. 4a and 4b are in much the same condition

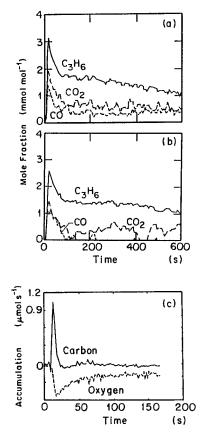


FIG. 4. Product responses for startup without gas-phase O_2 but with 6% C_3H_8 for a 30-mg catalyst sample using (a) a four-part cycle consisting of alternate exposures in the sequence $O_2: He: C_3H_8: He$, (b) a two-part cycle consisting of sequential exposures to O_2 and C_3H_8 , and (c) rate of accumulation of carbon and depletion of oxygen on catalyst after startup with a four-part exposure cycle as in (a).

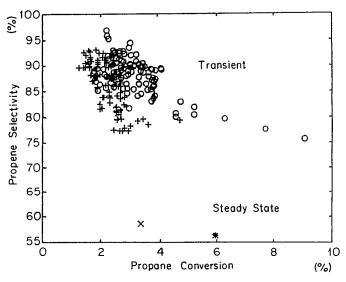
before the step-change to a C_3H_8 -containing feed. The C_3H_6 concentrations in Figs. 4a and 4b are nearly identical immediately after the step-change and their variations with time are similar. However, the carbon oxide concentrations are considerably lower when O_2 is not present in the gas phase. In this case, selectivity to C_3H_6 is over 75%, while when O_2 is present it is about 60%. When a switch to a mixture of C_3H_8 and O_2 is used, Fig. 3b shows decays after the product maxima are slower. Furthermore, CO continues to be formed, whereas, on the switch to 6% C₃H₈ alone, it disappears from the products after about 50 s. These results indicate that adsorbed oxygen plays a role in the total oxidation steps that is different from that of the lattice oxygen, even though lattice oxygen does produce total oxidation. During cyclic experiments, the catalyst exhibited constant activity: each cycle of C₃H₈ exposure produced the same quantities of products.

Figure 4 compares product concentrations during alternate O_2 and C_3H_8 exposures, for two-part and four-part cyclic experiments with 30 mg of catalyst. In both cases, the C_3H_6 selectivity was more than 70%. Concentrations of all products were higher for the four-part cycle, but in view of Fig. 2, differences probably resulted from experimental variations. Product transients appear to be the same. Higher C_3H_6 selectivity with a four-part cycle was expected because of He flushing. In the two-part cycle some weakly bound, nonselective oxygen should remain on the catalyst surface after O_2 exposure. The amount must be very small because product responses in the two- and four-part cycles are so similar.

Figure 4c shows the accumulation rate of carbon during the first 180 s of exposure to C_3H_8 for the four-part cycle with 30 mg of catalyst. Carbon appears on the catalyst just after the 9-s transport lag and then accumulates rapidly during the next 20 s. The quantity of carbon that accumulates is about 5 μ mol and does not vary from cycle to cycle. After 30 s, Fig. 4 suggests carbon accumulation ceases. In contrast, startup with gas-phase O₂ present and the reactant interruption experiments indicated very little carbon on the catalyst surface.

Figure 4c also shows the rate of oxygen removal from the catalyst. The time of the maximum depletion corresponds roughly to that for the maximum carbon deposition rate. Unlike carbon deposition, however, O_2 depletion continues for almost 90 s although at a decelerating rate. Integration indicated 74 μ mol of O_2 was removed in the first cycle. This increased to about 97 μ mol in the third cycle, after which it remained constant.

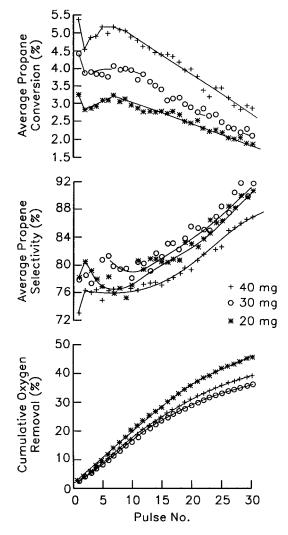
During O_2 partial cycles, the total quantity of O_2 adsorbed during the first 150 s varied between about 44 and 47 μ mol, corresponding to about 8.5% of the removable O_2 . Our measurements of the O_2 adsorbed account for only about half the O_2 removed by reaction with C_3H_8 . Considering that the catalyst did not deactivate during successive cycles,


FIG. 5. Comparison of time-average C_3H_8 selectivity under stepchange and steady-state operation at equal time-average C_3H_8 conversions. +, 17 mg catalyst, and \bigcirc , 30 mg catalyst, both with 10-min exposure to 6% C_3H_8 ; ×, 17 mg catalyst, and *, 30 mg catalyst, both with steady-state exposure to 6% C_3H_8 and 6% oxygen.

the above discrepancy must arise from inaccuracies in mass balances, the O_2 depletion and recovery being calculated from differences between relatively large numbers. Immediately after a switch to O_2 during cycling, about 1.4 μ mol of carbon oxides is produced. Again, this is much less than the carbon deposition during C_3H_8 exposure.

From a process standpoint, cycling experiments show that selectivity is increased by periodically switching between C_3H_8 and O_2 . This is clearly seen in Fig. 5, which plots C_3H_8 selectivity against C_3H_6 conversion for two quantities of catalyst (17 and 30 mg) under the same reaction conditions under cycling and steady-state conditions. At the same conversion of C_3H_8 , the figure shows much higher C_3H_6 selectivities are obtained in cyclic operation, i.e., in the absence of gas-phase oxygen. Propene selectivity increases as C_3H_8 conversion decreases. This behavior is anticipated because C_3H_6 is certainly an intermediate in C_3H_8 oxidation to CO_2 and water. The scatter in the figure at conversions between 2 and 4% results from inclusion of data for all cycles; we noted earlier that the catalyst is changing, certainly in the first cycles of an experiment.

Experiments were performed in which 20, 30, and 40 mg of catalyst were reduced by continuously switching between 6% C_3H_8 and He without any O_2 in the feed. The pulses were symmetrical, each lasting 30 s.


Under cycling between O_2 and C_3H_8 , a maximum in product formation occurred after C_3H_8 was introduced and all products appeared simultaneously. Selectivity remained stable as the catalyst was depleted of oxygen. In C_3H_8 pulsing, the response was different. After the first pulse of C_3H_8 , where there is a maximum in C_3H_6 production followed by

a fast decline, a maximum is no longer observed and the activity returns to about the level in the previous pulse. Nevertheless, over 30 pulses, a decline in activity is observed.

In C_3H_8 pulsing, no lag in carbon oxide appearance was evident on switching to He, whereas a lag in the CO response was observed on switching to He in the reaction interruption experiments (Fig. 2a). The latter was thought to originate from the oxidation of carbon species on the catalyst. In C_3H_8 pulsing, there may not be sufficient O_2 remaining on the catalyst surface after the first C_3H_8 pulse to oxidize surface carbon species.

Figure 6 shows the average conversion, selectivity, and cumulative O_2 removal from the catalyst for each pulse of C_3H_8 in the C_3H_8 pulsing experiments. After the first pulse, there is a large decrease in C_3H_8 conversion, but in the next three to six pulses the conversion increases slightly before resuming its decrease. Propene selectivity increases as more O_2 is removed from the catalyst, while C_3H_8 con-

FIG. 6. Variation of time-average conversion, selectivity to C_3H_6 , and cumulative O_2 removal from the catalyst for successive pulsing with C_3H_8 .

version decreases. This is not the well-known inverse relation between conversion and selectivity to an intermediate product. Although conversion is higher with 30 mg of catalyst than with 20 mg, the selectivity differs little between these two masses of catalyst. Only with 40 mg of catalyst does conversion seem high enough to cause a drop in selectivity. Conversion drops to between 2.5 and 3% for the final pulses of C₃H₈ over 40 mg of catalyst, but this is about the conversion for the initial pulses over 20 mg of catalyst. The 40-mg catalyst sample, however, is considerably more reduced. Propene selectivity is about 86% for these pulses compared with between 75 and 80% for the initial pulses over 20 mg of catalyst. Part of the increase in C_3H_6 selectivity must be due then to a selectivity improvement as the catalyst is reduced. However, a large reduction of the catalyst is required before selectivity improves. Selectivity to C₃H₆ increases only after about 10 pulses and 15 to 20% O₂ removal. The literature suggests that this relation between selectivity and catalyst reduction results from increasing metal-oxygen bond strength for the reduced catalyst (7, 8). Our observations confirm experiments of Andersen and Kung (9) for the oxidative dehydrogenation of C_4H_{10} over V_2O_5/Al_2O_3 .

The cumulative O_2 removal, shown in Fig. 6, is based only on the O_2 in the magnesium *ortho*-vanadate (Mg₃V₂O₈) phase. Reducing the vanadium from V⁵⁺ to V²⁺ corresponds to the removal of 37.5% of the O_2 . After the 30 pulses of C₃H₈, vanadium would appear to be completely reduced to V²⁺ in each catalyst sample. Perhaps some oxygen in the magnesium oxide is active and there may be additional adsorbed oxygen at or near the catalyst surface disregarded in bulk calculations. Regardless of the O₂ source, a relatively large quantity of O₂ is removed from the catalyst. Once again, hydrogen production was not observed, so oxidative dehydrogenation is the dominant reaction for production of C₃H₆ in these experiments, despite the reduction of the catalyst.

Temperature-programmed oxidation experiments were undertaken to verify the deposition of carbonaceous species during C₃H₈ pulsing experiments (11). A CO₂ peak is produced immediately after the switch to O₂ at about 530°C. A second peak occurs at about 640°C, indicating additional carbon species are on the catalyst that can be oxidized only at higher temperatures. These carbon species are also present on a catalyst operated under standard steady-state conditions. Only carbon species on the catalyst exposed to C_3H_8 pulsing seem to be oxidized at or near the reaction temperature of 510°C. Catalyst deactivation at steady-state conditions was not observed (3). Consequently, carbon species present on the catalyst and oxidized at elevated temperatures do not block active sites. Temperatureprogrammed desorption was also performed on catalyst samples from the C₃H₈ pulsing experiments Creaser et al. (10). Only small amounts of these oxides were observed,

indicating that carbon oxides form from carbonaceous species on the catalyst surface rather than from adsorption.

For the oxidative dehydrogenation system considered in this paper, our experiments demonstrate that carrying out the reaction without gas-phase O₂ improves C₃H₆ selectivity even at the same conversion of C₃H₈. Thus higher selectivity and possibly yield could be achieved by operating the dehydrogenation reactor cyclically by switching between C₃H₈ and O₂ streams. Experiments were undertaken to test this proposition (11). These demonstrated a large improvement in selectivity, but a significant reduction in C_3H_8 conversion. For cycle periods exceeding 1 min, selectivities to C₃H₈ between 70 and 80% are observed, compared with just over 50% in steady-state operation. This improvement is sufficient to increase the yield of C₃H₆ by 35% at a cycle period of about 1 min. Our cyclic measurements thus support periodic operation as an option in a commercial oxidative dehydrogenation process.

Transient experiments support a redox reaction mechanism involving magnesium *ortho*-vanadate. Our observations indicate only lattice O_2 participates in C_3H_6 formation. Significant O_2 depletion occurs at startup to the steady state. Some carbon deposition also occurs, but this does not appear to block active sites. Larger amounts occur in switching between O_2 and C_3H_8 , but most of this carbon is easily oxidized and does not contribute to deactivation. Our observations also predict the experimentally observed improvement in selectivity to the C_3H_6 product for a periodically operated reactor. In the absence of gas-phase O_2 following a step-change or startup, C_3H_6 selectivity was superior to that achieved at steady state, even at the same level of C_3H_8 conversion. A further increase in selectivity occurs when the catalyst is deeply reduced, beyond removal of about 20% of O_2 in the magnesium *ortho*-vanadate-phase. In the presence of gas-phase O_2 , some active and deep oxidizing O_2 species form on the catalyst surface, leading to total combustion of adsorbed hydrocarbons.

ACKNOWLEDGMENTS

This research would not have been possible without the financial support of The Swedish Board for Industrial and Technical Development and The Natural Sciences and Engineering Research Council of Canada.

REFERENCES

- 1. Zanthoff, Pantazidis, A., and Mirodatos, C., Chem. Eng. Sci. (1998).
- 2. Creaser, D., and Andersson, B., Appl. Catal. A 141, 131 (1996).
- 3. Kobayashi, H., and Kobayashi, M., Catal. Rev. Sci. Eng. 10, 139 (1974).
- 4. Sloczynski, J., Appl. Catal. A 146, 401 (1996).
- Pantazidis, A., and Mirodatos, C., *in* "Proceedings, 11th International Congress on Catalysis" (J. W. Hightower, W. N. Delgass, E. Iglesia, and A. T. Bell, Eds.), Stud. Surf. Sci. Catal., Vol. 101, p. 1029 (1996).
- Creaser, D., Ph.D. thesis, p. 28, University of Waterloo, Waterloo, Ontario, Canada, 1997.
- Owen, O. S., Kung, M. C., and Kung, H. H., *Catal. Lett.* 12, 45 (1992).
- 8. Patel, D., Andersen, P. J., and Kung, H. H., J. Catal. 125, 132 (1990).
- Andersen, P. J., and Kung, H. H., *in* "New Frontiers in Catalysis" (L. Guczi, F. Solymosi, and P. Teteryi, Eds.), Stud. Surf. Sci. Catal., Vol. 75, p. 205 (1993).
- Creaser, D., Andersson, B., Hudgins, R. R., and Silveston, P. L., *Chem. Eng. Sci.*, in press (1999).
- Creaser, D., Andersson, B., Hudgins, R. R., and Silveston, P. L., *Chem. Eng. Sci.*, in press (1999).